skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Milner, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Milner, George (Ed.)
    Abstract Integration of natural and cultural resource management is urgently needed to combat the effects of climate change. Scientists must contend with how human-induced climate change and rapid population expansion are fundamentally reworking densely inhabited coastal zones. We propose that a merger of archaeology, environmental science, and land management policy—different yet intertwined domains—is needed to address dramatic losses to biocultural resources that comprise coupled cultural-natural systems. We demonstrate the urgency of such approaches through analyses of coastal archaeological regions within the U.S. Atlantic and Gulf coasts where sea level rise is a primary threat, and we extend our findings globally through an assessment of primary risk factors and forecasts for archaeological sites in the Netherlands, Peru, and Oceania. Results show that across the U.S. Gulf Coast and in Oceania, where little hard infrastructure is in place to protect archaeological sites, hundreds of low-lying coastal sites will be lost under future climate scenarios. In other coasts, like that of the Rhine-Meuse Delta (the Netherlands), risks range from erosion caused by periods of flooding to the degradation of wetland sites caused by extreme droughts. In coastal Peru, population pressures pose the primary risk to archaeological sites through rapid agro-industrial growth, urban expansion, and El Niño climate variability. Across all risks, we propose that management strategies to mitigate losses to biocultural resources must be approached as a restoration process of linked sociocultural and physical environmental systems. 
    more » « less
    Free, publicly-accessible full text available March 27, 2026
  2. Milner, George (Ed.)
    Abstract There is a growing consensus that global patterns of modern human cranial and dental variation are shaped largely by neutral evolutionary processes, suggesting that craniodental features can be used as reliable proxies for inferring population structure and history in bioarchaeological, forensic, and paleoanthropological contexts. However, there is disagreement on whether certain types of data preserve a neutral signature to a greater degree than others. Here, we address this unresolved question and systematically test the relative neutrality of four standard metric and nonmetric craniodental data types employing an extensive computational genotype–phenotype comparison across modern populations from around the world. Our computation draws on the largest existing data sets currently available, while accounting for geographically structured environmental variation, population sampling uncertainty, disparate numbers of phenotypic variables, and stochastic variation inherent to a neutral model of evolution. Our results reveal that the four data types differentially capture neutral genomic variation, with highest signals preserved in dental nonmetric and cranial metric data, followed by cranial nonmetric and dental metric data. Importantly, we demonstrate that combining all four data types together maximizes the neutral genetic signal compared with using them separately, even with a limited number of phenotypic variables. We hypothesize that this reflects a lower level of genetic integration through pleiotropy between, compared to within, the four data types, effectively forming four different modules associated with relatively independent sets of loci. Therefore, we recommend that future craniodental investigations adopt holistic combined data approaches, allowing for more robust inferences about underlying neutral genetic variation. 
    more » « less